Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Vet Res ; 20(1): 184, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724994

RESUMO

Cinnamon and star anise essential oils are extracted from natural plants and provide a theoretical basis for the development and clinical application of compound essential oil pellets. However, cinnamon oil and star anise oil have the characteristics of a pungent taste, extreme volatility, poor palatability, and unstable physical and chemical properties, which limit their clinical use in veterinary medicine. In this study, the inhibitory effects of cinnamon oil and star anise oil on Escherichia coli and Salmonella were measured. Compound essential oil pellets were successfully prepared by centrifugal granulation technology. Subsequently, the in vitro dissolution of the pellets and their pharmacokinetics in pigs were investigated. The results showd that, cinnamon and star anise oils showed synergistic or additive inhibitiory effects on Escherichia coli and Salmonella. The oil pellets had enteric characteristics in vitro and high dissolution in vitro. The pharmacokinetic results showed that the pharmacokinetic parameters Cmax and AUC were directly correlated with the dosage and showed linear pharmacokinetic characteristics, which provided a theoretical basis for the development and clinical application of compound essential oil pellets.


Assuntos
Cinnamomum zeylanicum , Escherichia coli , Óleos Voláteis , Animais , Óleos Voláteis/farmacocinética , Óleos Voláteis/administração & dosagem , Cinnamomum zeylanicum/química , Escherichia coli/efeitos dos fármacos , Suínos , Antibacterianos/farmacocinética , Antibacterianos/administração & dosagem , Salmonella/efeitos dos fármacos , Satureja/química , Óleos de Plantas/farmacocinética , Óleos de Plantas/química , Masculino , Centrifugação
2.
Virulence ; 15(1): 2316459, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38378464

RESUMO

Actinobacillus pleuropneumoniae (APP) is an important pathogen of the porcine respiratory disease complex, which leads to huge economic losses worldwide. We previously demonstrated that Pichia pastoris-producing bovine neutrophil ß-defensin-5 (B5) could resist the infection by the bovine intracellular pathogen Mycobacterium bovis. In this study, the roles of synthetic B5 in regulating mucosal innate immune response and protecting against extracellular APP infection were further investigated using a mouse model. Results showed that B5 promoted the production of tumour necrosis factor (TNF)-α, interleukin (IL)-1ß, and interferon (IFN)-ß in macrophages as well as dendritic cells (DC) and enhanced DC maturation in vitro. Importantly, intranasal B5 was safe and conferred effective protection against APP via reducing the bacterial load in lungs and alleviating pulmonary inflammatory damage. Furthermore, in the early stage of APP infection, we found that intranasal B5 up-regulated the secretion of TNF-α, IL-1ß, IL-17, and IL-22; enhanced the rapid recruitment of macrophages, neutrophils, and DC; and facilitated the generation of group 3 innate lymphoid cells in lungs. In addition, B5 activated signalling pathways associated with cellular response to IFN-ß and activation of innate immune response in APP-challenged lungs. Collectively, B5 via the intranasal route can effectively ameliorate the immune suppression caused by early APP infection and provide protection against APP. The immunization strategy may be applied to animals or human respiratory bacterial infectious diseases. Our findings highlight the potential importance of B5, enhancing mucosal defence against intracellular bacteria like APP which causes early-phase immune suppression.


Assuntos
Actinobacillus pleuropneumoniae , Imunidade Inata , Humanos , Suínos , Animais , Bovinos , Actinobacillus pleuropneumoniae/metabolismo , Linfócitos , Pulmão/microbiologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Terapia de Imunossupressão
3.
PLoS One ; 18(8): e0290854, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37647293

RESUMO

Water quality regulation is widely recognized as a highly effective strategy for disease prevention in the field of aquaculture, and it holds significant potential for the development of sustainable aquaculture. Herein, four water quality regulators, including potassium monopersulfate (KMPS), tetrakis hydroxymethyl phosphonium sulfate (THPS), bacillus subtilis (BS), and chitosan (CS), were added to the culture water of Oreochromis niloticus (GIFT tilapia) every seven days. Subsequently, the effects of these four water quality regulators on GIFT tilapia were comprehensively evaluated by measuring the water quality index of daily growth-related performance and immune indexes of GIFT tilapia. The findings indicated that implementing the four water quality regulators resulted in a decrease in the content of ammonia nitrogen, active phosphate, nitrite, total organic carbon (TOC), and chemical oxygen demand (COD) in the water. Additionally, these regulators were found to maintain dissolved oxygen (DO) levels and pH of the water effectively. Furthermore, using these regulators demonstrated positive effects on various physiological parameters of GIFT tilapia, including improvements in final body weight, weight gain rate (WGR), specific growth rate (SGR), condition factor (CF), feed conversion ratio (FCR), spleen index (SI), hepato-somatic index (HSI), immune cell count, the activity of antioxidant-related enzymes (Nitric oxide, NO and Superoxide dismutase, SOD), and mRNA expression levels of immunity-related factors (Tumor Necrosis Factor-alpha, TNF-α and Interleukin-1 beta, IL-1ß) in the liver and spleen. Notably, the most significant improvements were observed in the groups treated with the BS and CS water quality regulators. Moreover, BS and CS groups exhibited significantly higher serum levels of albumin (ALB) and total protein (TP) (P < 0.05), whereas the other indicators showed no significant difference (P > 0.05) compared to the control group. However, the KMPS and THPS groups of GIFT tilapia exhibited significantly higher serum levels of aspartate aminotransferase (AST), alanine transaminase (ALT), creatinine (CRE) and blood urea nitrogen (BUN) (P < 0.05), whereas they exhibited significantly decreased HSI (P < 0.05). In addition, the partially pathological observations revealed the presence of cell vacuolation, nuclear shrinkage, and pyknosis within the liver. In conclusion, these four water quality regulators, mainly BS and CS, could improve the growth performance and immunity of GIFT tilapia to varying degrees by regulating the water quality and then further increasing the expression levels of immune-related factors or the activity of antioxidant-related enzymes of GIFT tilapia. On the contrary, the prolonged use of KMPS and THPS may gradually diminish their growth-enhancing properties and potentially hinder the growth of GIFT tilapia.


Assuntos
Ciclídeos , Tilápia , Animais , Antioxidantes , Qualidade da Água , Peso Corporal , Bacillus subtilis
4.
Bioimpacts ; 12(5): 395-404, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36381632

RESUMO

Introduction: The limited efficacy of BCG (bacillus Calmette-Guérin) urgently requires new effective vaccination approaches for the control of tuberculosis. Poly lactic-co-glycolic acid (PLGA) is a prevalent drug delivery system. However, the effect of PLGA-based nanoparticles (NPs) against tuberculosis for the induction of mucosal immune response is no fully elucidated. In this study, we hypothesized that intranasal immunization with culture filtrate protein-10 (CFP10)-loaded PLGA NPs (CFP10-NPs) could boost the protective immunity of BCG against Mycobacterium bovis in mice. Methods: The recombinant protein CFP10 was encapsulated with PLGA NPs to prepare CFP10-NPs by the classical water-oil-water solvent-evaporation method. Then, the immunoregulatory effects of CFP10-NPs on macrophages in vitro and on BCG-immunized mice in vivo were investigated. Results: We used spherical CFP10-NPs with a negatively charged surface (zeta-potential -28.5 ± 1.7 mV) having a particle size of 281.7 ± 28.5 nm in diameter. Notably, CFP10-NPs significantly enhanced the secretion of tumor necrosis factor α (TNF-α) and interleukin (IL)-1ß in J774A.1 macrophages. Moreover, mucosal immunization with CFP10-NPs significantly increased TNF-α and IL-1ß production in serum, and immunoglobulin A (IgA) secretion in bronchoalveolar lavage fluid (BALF), and promoted the secretion of CFP10-specific interferon-γ (IFN-γ) in splenocytes of mice. Furthermore, CFP10-NPs immunization significantly reduced the inflammatory area and bacterial load in lung tissues at 3-week post-M. bovis challenge. Conclusion: CFP10-NPs markedly improve the immunogenicity and protective efficacy of BCG. Our findings explore the potential of the airway mucosal vaccine based on PLGA NPs as a vehicle for targeted lung delivery.

5.
Autophagy ; 18(6): 1401-1415, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34720021

RESUMO

Mitophagy is a selective autophagy mechanism for eliminating damaged mitochondria and plays a crucial role in the immune evasion of some viruses and bacteria. Here, we report that Mycobacterium bovis (M. bovis) utilizes host mitophagy to suppress host xenophagy to enhance its intracellular survival. M. bovis is the causative agent of animal tuberculosis and human tuberculosis. In the current study, we show that M. bovis induces mitophagy in macrophages, and the induction of mitophagy is impaired by PINK1 knockdown, indicating the PINK1-PRKN/Parkin pathway is involved in the mitophagy induced by M. bovis. Moreover, the survival of M. bovis in macrophages and the lung bacterial burden of mice are restricted by the inhibition of mitophagy and are enhanced by the induction of mitophagy. Confocal microscopy analysis reveals that induction of mitophagy suppresses host xenophagy by competitive utilization of p-TBK1. Overall, our results suggest that induction of mitophagy enhances M. bovis growth while inhibition of mitophagy improves growth restriction. The findings provide a new insight for understanding the intracellular survival mechanism of M. bovis in the host.Abbreviations: BMDM: mouse bone marrow-derived macrophage; BNIP3: BCL2/adenovirus E1B interacting protein 3; BNIP3L/NIX: BCL2/adenovirus E1B interacting protein 3-like; BCL2L13: BCL2-like 13 (apoptosis facilitator); CCCP: carbonyl cyanide m-cholorophenyl hydrazone; FUNDC1: FUN14 domain-containing 1; FKBP8: FKBP506 binding protein 8; HCV: hepatitis C virus; HBV: hepatitis B virus; IFN: interferon; L. monocytogenes: Listeria monocytogenes; M. bovis: Mycobacterium bovis; Mtb: Mycobacterium tuberculosis; Mdivi-1: mitochondrial division inhibitor 1; PINK1: PTEN-induced putative kinase 1; TBK1: TANK-binding kinase 1; TUFM: Tu translation elongation factor, mitochondrial; TEM: transmission electron microscopy.


Assuntos
Macroautofagia , Macrófagos , Mitofagia , Mycobacterium bovis , Animais , Macrófagos/microbiologia , Proteínas de Membrana , Camundongos , Proteínas Mitocondriais/metabolismo , Mycobacterium bovis/metabolismo
6.
J Infect ; 83(1): 61-68, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33892015

RESUMO

Caspases are classified as inflammatory or apoptotic category. Inflammatory caspases participate in inflammasome activation, while apoptotic caspases mediate apoptotic activation. Previous studies have shown that apoptotic caspases prevent the production of IFN-ß during apoptosis or virus infection. However, the relationship between apoptotic caspases and IFN-ß production during intracellular bacterial infection is still unclear. Here, we investigated the role of apoptotic caspases in IFN-ß production induced by Mycobacterium bovis (M. bovis) infection. M. bovis is an intracellular bacterium and belongs to the Mycobacterium tuberculosis complex. M. bovis infection can cause tuberculosis in animals and human beings. In the current study, we found that M. bovis infection triggered mitochondrial stress, which caused the leakage of cytochrome c into the cytoplasm, and in turn, activated the downstream caspase-9 and-3. Furthermore, our results showed that activation of apoptotic caspases reduced IFN-ß production during M. bovis infection and vice versa. Confocal microscopy analysis revealed that apoptotic caspases prevented IFN-ß production by decreasing p-IRF3 nuclear translocation. Our findings demonstrate that apoptotic caspases negatively regulate the production of IFN-ß induced by an intracellular bacterial infection.


Assuntos
Apoptose , Caspases , Interferon beta/imunologia , Macrófagos/imunologia , Mycobacterium bovis , Animais , Caspases/genética , Macrófagos/microbiologia , Camundongos , Tuberculose
7.
Biomed Pharmacother ; 137: 111341, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33561646

RESUMO

Mycobacterium bovis (M. bovis) is a member of mycobacterium tuberculosis complex (MTBC), and a causative agent of chronic respiratory disease in a wide range of hosts. Bacillus Calmette-Guerin (BCG) vaccine is mostly used for the prevention of childhood tuberculosis. Further substantial implications are required for the development and evaluation of new tuberculosis (TB) vaccines as well as improving the role of BCG in TB control strategies. In this study, we prepared PLGA nanoparticles encapsulated with argF antigen (argF-NPs). We hypothesized, that argF nanoparticles mediate immune responses of BCG vaccine in mice models of M. bovis infection. We observed that mice vaccinated with argF-NPs exhibited a significant increase in secretory IFN-γ, CD4+ T cells response and mucosal secretory IgA against M. bovis infection. In addition, a marked increase was observed in the level of secretory IL-1ß, TNF-α and IL-10 both in vitro and in vivo upon argF-NPs vaccination. Furthermore, argF-NPs vaccination resulted in a significant reduction in the inflammatory lesions in the lung's tissues, minimized the losses in total body weight and reduced M. bovis burden in infected mice. Our results indicate that BCG prime-boost strategy might be a promising measure for the prevention against M. bovis infection by induction of CD4+ T cells responses and mucosal antibodies.


Assuntos
Vacina BCG/administração & dosagem , Vacina BCG/imunologia , Mycobacterium bovis , Nanopartículas/administração & dosagem , Ornitina Carbamoiltransferase/imunologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/imunologia , Tuberculose Bovina/prevenção & controle , Administração Intranasal , Animais , Formação de Anticorpos/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Bovinos , Linhagem Celular , Modelos Animais de Doenças , Feminino , Imunoglobulina A Secretora/metabolismo , Imunoglobulina G/sangue , Interferon gama/metabolismo , Interleucina-10/sangue , Interleucina-1beta/sangue , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos Endogâmicos BALB C , Mycobacterium bovis/crescimento & desenvolvimento , Mycobacterium bovis/patogenicidade , Nanopartículas/química , Ornitina Carbamoiltransferase/administração & dosagem , Ornitina Carbamoiltransferase/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Baço/microbiologia , Baço/patologia , Fator de Necrose Tumoral alfa/sangue
8.
Pharmaceutics ; 12(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271900

RESUMO

Mycobacterium bovis (M. bovis) is a member of the Mycobacterium tuberculosis complex imposing a high zoonotic threat to human health. The limited efficacy of BCG (Bacillus Calmette-Guérin) and upsurges of drug-resistant tuberculosis require new effective vaccination approaches and anti-TB drugs. Poly (lactic-co-glycolic acid) (PLGA) is a preferential drug delivery system candidate. In this study, we formulated PLGA nanoparticles (NPs) encapsulating the recombinant protein bovine neutrophil ß-defensin-5 (B5), and investigated its role in immunomodulation and antimicrobial activity against M. bovis challenge. Using the classical water-oil-water solvent-evaporation method, B5-NPs were prepared, with encapsulation efficiency of 85.5% ± 2.5%. These spherical NPs were 206.6 ± 26.6 nm in diameter, with a negatively charged surface (ζ-potential -27.1 ± 1.5 mV). The encapsulated B5 protein from B5-NPs was released slowly under physiological conditions. B5 or B5-NPs efficiently enhanced the secretion of tumor necrosis factor α (TNF-α), interleukin (IL)-1ß and IL-10 in J774A.1 macrophages. B5-NPs-immunized mice showed significant increases in the production of TNF-α and immunoglobulin A (IgA) in serum, and the proportion of CD4+ T cells in spleen compared with B5 alone. In immunoprotection studies, B5-NPs-immunized mice displayed significant reductions in pulmonary inflammatory area, bacterial burden in the lungs and spleen at 4-week after M. bovis challenge. In treatment studies, B5, but not B5-NPs, assisted rifampicin (RIF) with inhibition of bacterial replication in the lungs and spleen. Moreover, B5 alone also significantly reduced the bacterial load in the lungs and spleen. Altogether, our findings highlight the significance of the B5-PLGA NPs in terms of promoting the immune effect of BCG and the B5 in enhancing the therapeutic effect of RIF against M. bovis.

9.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 33(12): 1669-1675, 2017 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-29382429

RESUMO

Objective To inhibit cisplatin-induced autophagy and improve the cisplatin sensitivity of A549 cells by knockdown the silent information regulator of transcription 1 (SIRT1). Methods Both mRNA and protein levels of SIRT1 in BEAS-2B, A549 and A549/DDP cells were detected by real-time quantitative PCR and Western blotting. After cisplatin treatment, the protein levels of SIRT1, LC3, P62 and beclin-1 in A549 cells were detected by Western blotting. A549 cells were transfected by siRNA to silence SIRT1 expression. Then, the apoptotic morphology was observed by fluorescence microscopy with Hoechst33258 staining. The apoptotic rate was analyzed by flow cytometry. The expressions of SIRT1, LC3, P62, cleaved caspase-3 and poly(ADP-ribose)polymerase (PARP) were measured by Western blotting. Results Both mRNA and protein levels of SIRT1 in A549 cells and A549/DDP cells were significantly higher than those in BEAS-2B cells, and they were higher in A549/DDP cells than in A549 cells. After cisplatin treatment, the protein levels of SIRT1, LC3 and beclin-1 in A549 cells increased, while P62 decreased. After transfected with SIRT1-siRNA, the expression of SIRT1 in A549 cells decreased. Compared with cisplatin group, the number of the apoptotic cells increased with the obvious occurrence of pyknosis and nuclear fragmentation in cisplatin plus SIRT1-siRNA group. Moreover, the expressions of P62, cleaved caspase-3 and PARP were up-regulated accompanied with LC3 decrease. Conclusion SIRT1 is highly expressed in A549 cells. The sensitivity of A549 cells to cisplatin can be improved by inhibiting the cisplatin-induced autophagy through knockdown of SIRT1.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Cisplatino/farmacologia , Sirtuína 1/genética , Células A549 , Apoptose/efeitos dos fármacos , Humanos , RNA Interferente Pequeno/genética , Sirtuína 1/análise , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA